首页
📁归档
⏳时光机
📫留言
🚩友链
💰资助名单
推荐
🎧音乐
🏜️ 壁纸
❤ 捐助
Search
1
【NPN/PNP三极管】放大电路饱和失真和截止失真的区别
13,754 阅读
2
论文写作中如何把word里面所有数字和字母替换为新罗马字体
7,698 阅读
3
【高数】形心计算公式讲解大全
7,150 阅读
4
【概论】一阶矩、二阶矩原点矩,中心矩区别与概念
5,609 阅读
5
如何判断运放是工作在线性区还是非线性区
5,601 阅读
🪶微语&随笔
励志美文
我的随笔
写作办公
📡电子&通信
嵌入式&系统
通信&信息处理
编程&脚本笔记
⌨️IC&系统
FPGA&ASIC
VLSI&IC验证
EDA&虚拟机
💻电子&计算机
IP&SOC设计
机器学习
软硬件算法
登录
笔试面试(共3篇)
找到
3
篇与
笔试面试
相关的结果
2023-12-11
华为C++算法-识别有效的IP地址和掩码并进行分类统计
问题 注意: 输入描述: 输出描述: 示例 需要注意的细节 思路 具体实现 代码 问题 请解析IP地址和对应的掩码,进行分类识别。要求按照A/B/C/D/E类地址归类,不合法的地址和掩码单独归类。 所有的IP地址划分为 A,B,C,D,E五类 A类地址从1.0.0.0到126.255.255.255; B类地址从128.0.0.0到191.255.255.255; C类地址从192.0.0.0到223.255.255.255; D类地址从224.0.0.0到239.255.255.255; E类地址从240.0.0.0到255.255.255.255 私网IP范围是: 从10.0.0.0到10.255.255.255 从172.16.0.0到172.31.255.255 从192.168.0.0到192.168.255.255 子网掩码为二进制下前面是连续的1,然后全是0。(例如:255.255.255.32就是一个非法的掩码) (注意二进制下全是1或者全是0均为非法子网掩码) 注意: 类似于【0...】和【127...】的IP地址不属于上述输入的任意一类,也不属于不合法ip地址,计数时请忽略 私有IP地址和A,B,C,D,E类地址是不冲突的 输入描述: 多行字符串。每行一个IP地址和掩码,用~隔开。 输出描述: 统计A、B、C、D、E、错误IP地址或错误掩码、私有IP的个数,之间以空格隔开。 示例 输入: 10.70.44.68~255.254.255.0 1.0.0.1~255.0.0.0 192.168.0.2~255.255.255.0 19..0.~255.255.255.0 输出: 1 0 1 0 0 2 1 说明: 10.70.44.68~255.254.255.0的子网掩码非法,19..0.~255.255.255.0的IP地址非法,所以错误IP地址或错误掩码的计数为2; 1.0.0.1~255.0.0.0是无误的A类地址; 192.168.0.2~255.255.255.0是无误的C类地址且是私有IP; 所以最终的结果为1 0 1 0 0 2 1 示例2 输入: 0.201.56.50~255.255.111.255 127.201.56.50~255.255.111.255 输出: 0 0 0 0 0 0 0 说明: 类似于【0...】和【127...】的IP地址不属于上述输入的任意一类,也不属于不合法ip地址,计数时请忽略 需要注意的细节 类似于【0...】和【127...】的IP地址不属于上述输入的任意一类,也不属于不合法ip地址,计数时可以忽略 私有IP地址和A,B,C,D,E类地址是不冲突的,也就是说需要同时+1 如果子网掩码是非法的,则不再需要查看IP地址 全零【0.0.0.0】或者全一【255.255.255.255】的子网掩码也是非法的 思路 按行读取输入,根据字符‘~’ 将IP地址与子网掩码分开 查看子网掩码是否合法。 合法,则继续检查IP地址 非法,则相应统计项+1,继续下一行的读入 查看IP地址是否合法 合法,查看IP地址属于哪一类,是否是私有ip地址;相应统计项+1 非法,相应统计项+1 具体实现 判断IP地址是否合法,如果满足下列条件之一即为非法地址 数字段数不为4 存在空段,即【192..1.0】这种 某个段的数字大于255 判断子网掩码是否合法,如果满足下列条件之一即为非法掩码 不是一个合格的IP地址 在二进制下,不满足前面连续是1,然后全是0 在二进制下,全为0或全为1 如何判断一个掩码地址是不是满足前面连续是1,然后全是0? 将掩码地址转换为32位无符号整型,假设这个数为b。如果此时b为0,则为非法掩码 将b按位取反后+1。如果此时b为1,则b原来是二进制全1,非法掩码 如果b和b-1做按位与运算后为0,则说明是合法掩码,否则为非法掩码 代码 注意getline函数可以指定分割字符串的字符 // 引入输入输出流、字符串、字符串流和向量等头文件 #include<iostream> #include<string> #include<sstream> #include<vector> // 使用标准命名空间 using namespace std; // 定义一个函数,判断一个字符串是否是合法的IP地址 bool judge_ip(string ip){ // 定义一个整数变量,记录IP地址的段数 int j = 0; // 定义一个字符串流对象,用于分割IP地址 istringstream iss(ip); // 定义一个字符串变量,用于存储IP地址的每一段 string seg; // 使用循环,以'.'为分隔符,获取IP地址的每一段 while(getline(iss,seg,'.')) // 如果段数加一大于4,或者该段为空,或者该段的数值大于255,说明不是合法的IP地址,返回false if(++j > 4 || seg.empty() || stoi(seg) > 255) return false; // 如果循环结束后,段数等于4,说明是合法的IP地址,返回true return j == 4; } // 定义一个函数,判断一个字符串是否是私有的IP地址 bool is_private(string ip){ // 定义一个字符串流对象,用于分割IP地址 istringstream iss(ip); // 定义一个字符串变量,用于存储IP地址的每一段 string seg; // 定义一个整数向量,用于存储IP地址的每一段的数值 vector<int> v; // 使用循环,以'.'为分隔符,获取IP地址的每一段,并将其转换为整数,存入向量中 while(getline(iss,seg,'.')) v.push_back(stoi(seg)); // 如果IP地址的第一段等于10,说明是私有的IP地址,返回true if(v[0] == 10) return true; // 如果IP地址的第一段等于172,并且第二段在16到31之间,说明是私有的IP地址,返回true if(v[0] == 172 && (v[1] >= 16 && v[1] <= 31)) return true; // 如果IP地址的第一段等于192,并且第二段等于168,说明是私有的IP地址,返回true if(v[0] == 192 && v[1] == 168) return true; // 如果以上条件都不满足,说明不是私有的IP地址,返回false return false; } // 定义一个函数,判断一个字符串是否是合法的子网掩码 bool is_mask(string ip){ // 定义一个字符串流对象,用于分割IP地址 istringstream iss(ip); // 定义一个字符串变量,用于存储IP地址的每一段 string seg; // 定义一个无符号整数变量,用于存储IP地址的二进制表示 unsigned b = 0; // 使用循环,以'.'为分隔符,获取IP地址的每一段,并将其转换为整数,左移8位后与b进行按位或运算,得到IP地址的二进制表示 while(getline(iss,seg,'.')) b = (b << 8) + stoi(seg); // 如果b等于0,说明不是合法的子网掩码,返回false if(!b) return false; // 将b按位取反后加一,得到b的补码 b = ~b + 1; // 如果b等于1,说明不是合法的子网掩码,返回false if(b == 1) return false; // 如果b与b减一进行按位与运算,结果等于0,说明b只有一个1,说明是合法的子网掩码,返回true if((b & (b-1)) == 0) return true; // 如果以上条件都不满足,说明不是合法的子网掩码,返回false return false; } // 定义主函数 int main(){ // 定义一个字符串变量,用于存储输入的IP地址和子网掩码 string input; // 定义七个整数变量,用于统计A、B、C、D、E类地址、错误地址和私有地址的个数 int a = 0,b = 0,c = 0,d = 0,e = 0,err = 0,p = 0; // 使用循环,读取输入的IP地址和子网掩码,直到输入结束 while(cin >> input){ // 定义一个字符串流对象,用于分割IP地址和子网掩码 istringstream is(input); // 定义一个字符串变量,用于存储IP地址或子网掩码 string add; // 定义一个字符串向量,用于存储IP地址和子网掩码 vector<string> v; // 使用循环,以'~'为分隔符,获取IP地址和子网掩码,并存入向量中 while(getline(is,add,'~')) v.push_back(add); // 如果IP地址或子网掩码不合法,错误地址的个数加一 if(!judge_ip(v[1]) || !is_mask(v[1])) err++; else{ // 如果IP地址不合法,错误地址的个数加一 if(!judge_ip(v[0])) err++; else{ // 获取IP地址的第一段的数值 int first = stoi(v[0].substr(0,v[0].find_first_of('.'))); // 如果IP地址是私有的,私有地址的个数加一 if(is_private(v[0])) p++; // 根据IP地址的第一段的数值,判断IP地址的类别,并相应的类别的个数加一 if(first > 0 && first <127) a++; else if(first > 127 && first <192) b++; else if(first > 191 && first <224) c++; else if(first > 223 && first <240) d++; else if(first > 239 && first <256) e++; } } } // 输出A、B、C、D、E类地址、错误地址和私有地址的个数 cout << a << " " << b << " " << c << " " << d << " " << e << " " << err << " " << p << endl; // 返回0,表示程序正常结束 return 0; }
嵌入式&系统
编程&脚本笔记
软硬件算法
# 嵌入式
# 笔试面试
# C/C++
刘航宇
2年前
0
264
0
联发科2024年数字IC设计验证实习生考题解析
总体而言难度中等偏上,如有错误欢迎指正,考察感觉更像是考察嵌入式工程师(有STM32、FPGA基础就很轻松):有数电、模电、python、verilog、C语言、SOC系统等基础知识,可以看到其实很对口电子信息类专业如电子信息、微电子、通信工程、电子科学、集成电路等专业,没有考察模集如果考模集大部分人要G,数集也没考,可能太底层了与工业界需求有偏差,数集在笔试面试中我认为如果考,可能考时序与功耗部分。这里的Round-Robin算法很值得学习。 目录 1、(20分)逻辑化简: 2、(5分)ASIC flow 中综合工具的作用是什么?综合的时候需要SDC文件进行约束,请列举3条SDC的语法。 3、(10分)智力题 4、(10分)选择参与过的任一个项目,简述项目内容以及流程,讲述您在项目中承担的任务,挑一项你认为难的地方并阐述解决方案。 5、(5分)用python写一个冒泡排序的函数以及测试程序。 6、(15分)用Verilog 写一个 Round Robin 仲裁器。模块端口如下: 7、(15分)关于DMA寄存器配置,DMA寄存器(地址 0x81050010)表: 8、(20分)二阶带通滤波器,利用RC组件搭建,通带范围 1kHz~30kHz ,两个电阻 R 均为10kΩ ,问两个电容容值多少? 1、(20分)逻辑化简: 图片 (1)列出真值表 (2)列出其卡诺图 (3)写出Z的最简表达式 答:卡诺图:卡诺图画完后勾1就完事了 提示:约束项的一般形式为:与或式 = 0 (如果不是此种形式,化为此种形式);如此题的BC = 0;或者AB +CD = 0;ABC + CD = 0;等等。BC=0(即B=1,且C=1)对应的格子画X。 图片 图片 2、(5分)ASIC flow 中综合工具的作用是什么?综合的时候需要SDC文件进行约束,请列举3条SDC的语法。 答:ASIC flow 中综合工具的作用是将RTL级的硬件描述语言转换为与特定工艺库相匹配的门级网表,同时进行优化以满足时序、面积和功耗等约束。 综合的时候需要SDC文件进行约束,SDC文件是一种基于Tcl的格式,用于指定设计的时序约束34。SDC文件中的常用时序约束语法有: create_clock -name <clock_name> -period <clock_period> [get_ports <clock_port>] 用于创建时钟源并指定时钟周期。 set_input_delay -clock <clock_name> <delay_value> [get_ports <input_port>] 用于指定输入端口相对于时钟源的延迟。 set_output_delay -clock <clock_name> <delay_value> [get_ports <output_port>] 用于指定输出端口相对于时钟源的延迟。 set_clock_uncertainty -setup <setup_value> -hold <hold_value> <clock_name> 用于指定时钟源的不确定性,包括建立时间和保持时间。 set_false_path -from [get_ports <source_port>] -to [get_ports <destination_port>] 用于指定不需要进行时序分析的路径。 set_multicycle_path -setup -from [get_clocks <source_clock>] -to [get_clocks <destination_clock>] <cycle_number> 用于指定多周期路径,即源时钟和目标时钟之间有多个周期的时间差。3、(10分)智力题 (1)2 12 1112 3112 132112 ,下一个数?给理由; 答:第一个数是2,第二个数是12,表示前一个数有1个2;第三个数是1112,表示前一个数有1个1和1个2;以此类推。所以,下一个数是1113122112,表示前一个数有1个1,1个3,2个1和2个2 (2)有一个小偷费劲力气进入到了银行的金库里。在金库里他找到了一百个箱子,每一个箱子里都装满了金币。不过,只有一个箱子里装的是真的金币,剩下的99个箱子里都是假的。真假金币的外形和质感完全一样,任何人都无法通过肉眼分辨出来。它们只有一个区别:真金币每一个重量为101克,而假金币的重量是100克。在金库里有一个电子秤,它可以准确地测量出任何物品的重量,精确到克。但很不幸的是,这个电子秤和银行的报警系统相连接,只要被使用一次就会立刻失效。请问,小偷怎么做才能只使用一次电子秤就找到装着真金币的箱子呢? 答:小偷可以这样做:从第一个箱子里拿出1个金币,从第二个箱子里拿出2个金币,从第三个箱子里拿出3个金币,以此类推,直到从第一百个箱子里拿出100个金币。然后,把所有拿出来的金币放在电子秤上,测量它们的总重量。如果所有的金币都是假的,那么总重量应该是5050克(等于1+2+3+…+100)。如果有一个箱子里是真的金币,那么总重量会比5050克多出一些。这个多出来的部分就是真金币的数量乘以1克。例如,如果第十一个箱子里是真的金币,那么总重量会比5050克多出11克,因为从第十一个箱子里拿出了11个真金币。所以,小偷只要看电子秤上显示的数字减去5050,就能知道哪个箱子里是真的金币了。 4、(10分)选择参与过的任一个项目,简述项目内容以及流程,讲述您在项目中承担的任务,挑一项你认为难的地方并阐述解决方案。 答:优先答ASIC的设计与验证项目,其次是FPGA项目(如基于FPGA的图像处理、天线阵、雷达、加速器等等),其它项目不要答。 5、(5分)用python写一个冒泡排序的函数以及测试程序。 # 定义冒泡排序函数 def bubble_sort(lst): # 获取列表长度 n = len(lst) # 遍历列表n-1次 for i in range(n-1): # 设置一个标志,用于判断是否发生交换 swapped = False # 遍历未排序的部分 for j in range(n-1-i): # 如果前一个元素大于后一个元素,交换位置 if lst[j] > lst[j+1]: lst[j], lst[j+1] = lst[j+1], lst[j] # 标志设为True,表示发生了交换 swapped = True # 如果没有发生交换,说明列表已经有序,提前结束循环 if not swapped: break # 返回排序后的列表 return lst # 定义测试程序 # 创建一个乱序的列表 lst = [5, 3, 8, 2, 9, 1, 4, 7, 6] # 打印原始列表 print("Original list:", lst) # 调用冒泡排序函数,对列表进行排序 lst = bubble_sort(lst) # 打印排序后的列表 print("Sorted list:", lst)结果图 image.png图片 6、(15分)用Verilog 写一个 Round Robin 仲裁器。模块端口如下: input clock; input reset_b; input [N-1:0] request; input [N-1] lock; output [N-1] grant; //one-hot此处的 lock 输入信号,表示请求方收到了仲裁许可,在对应的lock拉低之前,仲裁器不可以开启新的仲裁。(可简单理解为仲裁器占用) 该题要求参数化编程,在模块例化时可调整参数。也即是说你不能写一个固定参数,比如N=8的模块。 参考波形图: image.png图片 答: Round-Robin算法:当有多个设备同时想占用同一个资源时,需要仲裁器通过某种调度算法决定不同设备使用资源的先后顺序。 Round Robin算法就是其中一种调度算法,其思路是,当多个仲裁请求(request)送给仲裁器时,仲裁器通过轮询的方式分时给不同的设备返回许可(grant),当一个requestor 得到了grant许可之后,它的优先级在接下来的仲裁中就变成了最低,当同时有多个requestor的时候,grant可以依次给到每个requestor,即使之前高优先级的requestor再次有新的request,也会等前面的requestor都grant之后再轮到它。由此看出,Round Robin算法是一种公平的算法,它避免了当最高优先级的requestor不断有新的request时,具有最高优先级的requestor一直占用资源,导致其他requestor无法占用资源的阻塞现象。 在verilog设计中,如何实现呢?假设request是位宽是6,最高位是第5位,最低位是第0位,默认低比特位具有高优先级。 1.首先需要找到request中优先级最高的比特位,对优先级最高的比特位给出许可信号。这一步可以通过request和它的2的补码按位与。这是因为一个数和它的补码相与,得到的结果是一个独热码,独热码为1的那一位是这个数最低的1。 2.在下一轮仲裁中,已经被仲裁许可的比特位变成了最低优先级,而未被仲裁许可的比特位将会被仲裁。因此对第一步中给出许可的比特位(假设是第2位)以及它的低比特位进行屏蔽,对request中的第5位到第3位进行保持,这个操作可以利用掩码111000和request相与实现得到。 得到掩码的方法是,对第一步的许可信号grant-1,再与grant本身相或,相或的结果再取反。 3.通过第二步得到第2位到第0位被屏蔽的request_new信号,判断request_new是否为全0信号,如果是全0信号,代表此时不存在需要被仲裁的比特位,则返回第一步:找到request中优先级最高的比特位,对优先级最高的比特位给出许可信号,然后进行第二步。如果request_new不是全0信号,代表存在未被仲裁的比特位,则找到request_new中优先级最高的比特位,对优先级最高的比特位给出许可信号,然后进行第二步。 // 功能: // -1- Round Robin 仲裁器 // -2- 仲裁请求个数N可变 // -3- 加入lock机制(类似握手) // -4- 复位时的最高优先级定为 0 ,次优先级:1 -> 2 …… -> N-2 -> N-1 `timescale 1ns / 1ps module RoundRobinArbiter #( parameter N = 4 //仲裁请求个数 )( input clock, input reset_b, input [N-1:0] request, input [N-1:0] lock, output reg [N-1:0] grant//one-hot ); // 模块内部参数 localparam IDLE = 3'b001;// 复位进入空闲状态,接收并处理系统的初次仲裁请求 localparam WAIT_REQ_GRANT = 3'b010;// 等待后续仲裁请求到来,并进行仲裁 localparam WAIT_LOCK = 3'b100;// 等待LOCK拉低 // 模块内部信号 reg [2:0] R_STATUS; //请求状态 reg [N-1:0] R_MASK; //掩码 wire [N-1:0] W_REQ_MASKED; assign W_REQ_MASKED = request & R_MASK; //屏蔽低位 always @ (posedge clock) begin if(~reset_b) begin R_STATUS <= IDLE; R_MASK <= 0; grant <= 0; end else begin case(R_STATUS) IDLE: begin if(|request) //首次仲裁请求,不全为0 begin R_STATUS <= WAIT_LOCK; //首先需要找到request中优先级最高的比特位,对优先级最高的比特位给出许可信号。 //这一步可以通过request和它的2的补码按位与。这是因为一个数和它的补码相与,得到的结果是一个独热码,独热码为1的那一位是这个数最低的1 grant <= request & ((~request)+1); R_MASK <= ~((request & ((~request)+1))-1 | (request & ((~request)+1))); //得到掩码的方法是,对第一步的许可信号grant-1,再与grant本身相或,相或的结果再取反。 end else begin R_STATUS <= IDLE; end end WAIT_REQ_GRANT://处理后续的仲裁请求 begin if(|request) begin R_STATUS <= WAIT_LOCK; //在下一轮仲裁中,已经被仲裁许可的比特位变成了最低优先级,而未被仲裁许可的比特位将会被仲裁。 //因此对第一步中给出许可的比特位(假设是第2位)以及它的低比特位进行屏蔽,对request中的第5位到第3位进行保持 //这个操作可以利用掩码111000和request相与实现得到。 if(|(request & R_MASK))//不全为零 begin grant <= W_REQ_MASKED & ((~W_REQ_MASKED)+1); R_MASK <= ~((W_REQ_MASKED & ((~W_REQ_MASKED)+1))-1 | (W_REQ_MASKED & ((~W_REQ_MASKED)+1))); end else begin grant <= request & ((~request)+1); R_MASK <= ~((request & ((~request)+1))-1 | (request & ((~request)+1))); end end else begin R_STATUS <= WAIT_REQ_GRANT; grant <= 0; R_MASK <= 0; end end //通过第二步得到第2位到第0位被屏蔽的request_new信号, //判断request_new是否为全0信号,如果是全0信号,代表此时不存在需要被仲裁的比特位,则返回第一步:找到request中优先级最高的比特位, //对优先级最高的比特位给出许可信号,然后进行第二步。如果request_new不是全0信号,代表存在未被仲裁的比特位, //则找到request_new中优先级最高的比特位,对优先级最高的比特位给出许可信号,然后进行第二步。 WAIT_LOCK: begin if(|(lock & grant)) //未释放仲裁器 begin R_STATUS <= WAIT_LOCK; end else if(|request) //释放的同时存在仲裁请求 begin R_STATUS <= WAIT_LOCK; if(|(request & R_MASK))//不全为零 begin grant <= W_REQ_MASKED & ((~W_REQ_MASKED)+1); R_MASK <= ~((W_REQ_MASKED & ((~W_REQ_MASKED)+1))-1 | (W_REQ_MASKED & ((~W_REQ_MASKED)+1))); end else begin grant <= request & ((~request)+1); R_MASK <= ~((request & ((~request)+1))-1 | (request & ((~request)+1))); end end else begin R_STATUS <= WAIT_REQ_GRANT; grant <= 0; R_MASK <= 0; end end default: begin R_STATUS <= IDLE; R_MASK <= 0; grant <= 0; end endcase end end endmodule测试代码 `timescale 1ns / 1ps module RoundRobinArbiter_tb; parameter N = 4; // 可以在测试时调整参数 // 定义测试信号 reg clock; reg reset_b; reg [N-1:0] request; reg [N-1:0] lock; wire [N-1:0] grant; // 定义时钟信号 initial clock = 0; always #10 clock = ~clock; // 实例化仲裁器模块 RoundRobinArbiter #( .N(N) ) inst_RoundRobinArbiter ( .clock (clock), .reset_b (reset_b), .request (request), .lock (lock), .grant (grant) ); // 定义时钟周期和初始值 initial begin reset_b <= 1'b0; request <= 0; lock <= 0; end // 定义请求和锁定信号的变化 initial begin #20; reset_b <= 1'b1; @(posedge clock) request <= 2; lock <= 2; @(posedge clock) request <= 0; @(posedge clock) request <= 5; lock <= 7; @(posedge clock) lock <= 5; @(posedge clock) request <= 1; @(posedge clock) lock <= 1; @(posedge clock) request <= 0; @(posedge clock) lock <= 0; #1000 $stop; // 测试结束 end // 显示测试结果和波形图 initial begin $monitor("Time=%t, clock=%b, reset_b=%b, request=%b, lock=%b, grant=%b", $time, clock, reset_b, request, lock, grant); $dumpfile("RoundRobinArbiter_tb.vcd"); $dumpvars(0,RoundRobinArbiter_tb); end endmodule结果: image.png图片 如果对波形图无法理解可以看此博文 https://blog.csdn.net/m0_49540263/article/details/114967443 7、(15分)关于DMA寄存器配置,DMA寄存器(地址 0x81050010)表: image.png图片 image.png图片 Type 表示读写类型。Reset 表示复位值。 写一个C函数 void dma_driver(void),按步骤完成以下需求: 分配DMA所需的源地址(0x30) 分配DMA所需的目的地址(0x300) 设置传输128 Byte 数据 开始DMA传输 等待DMA传输结束 答: // 假设有以下宏定义 #define DMA_REG 0x81050010 // DMA控制寄存器的地址 #define DMA_SRC_ADDR 0x30 // DMA源地址 #define DMA_DST_ADDR 0x300 // DMA目的地址 #define DMA_SIZE 128 // DMA传输大小 #define DMA_START 1 // DMA开始传输的标志位 // 定义C函数 void dma_driver(void) void dma_driver(void) { // 定义一个指向DMA控制寄存器的指针 volatile uint32_t *dma_reg = (volatile uint32_t *)DMA_REG; // 清空DMA控制寄存器的值 *dma_reg = 0; // 设置DMA源地址,目的地址和传输大小 *dma_reg |= (DMA_SRC_ADDR << 2) | (DMA_DST_ADDR << 13) | (DMA_SIZE << 24); // 开始DMA传输 *dma_reg |= DMA_START; // 等待DMA传输结束 while (*dma_reg & DMA_START) { // 可以在这里做一些其他的事情,比如打印日志或者检查错误 // printf("Waiting for DMA to finish...\n"); // check_error(); } }官方一点的表达:DMA,全称为:Direct Memory Access,即直接存储器访问。直接存储器存取( DMA )用来提供在外设和存储器之间或者存储器和存储器之间的高速数据传输。无须 CPU 干预,数据可以通过 DMA 快速地移动,这就节省了 CPU 的资源来做其他操作。典型的例子就是移动一个外部内存的区块到芯片内部更快的内存区。像是这样的操作并没有让处理器工作拖延,反而可以被重新排程去处理其他的工作。DMA 传输对于高效能嵌入式系统算法和网络是很重要的。DMA 传输方式无需 CPU 直接控制传输,也没有中断处理方式那样保留现场和恢复现场的过程,通过硬件为 RAM 与 I/O 设备开辟一条直接传送数据的通路, 能使 CPU 的效率大为提高。 8、(20分)二阶带通滤波器,利用RC组件搭建,通带范围 1kHz~30kHz ,两个电阻 R 均为10kΩ ,问两个电容容值多少? 答:第一步首得知道二阶带通(RC)滤波器的电路长啥样,高、低通组合一下就是带通,自己思考一下高、低通组合:如串联或并联,会得到带通还是带组? 电路图: H___H21L__E34_WC@43F1_8.jpg图片 这个一看就是总传递函数=A1*A2(模电二阶有源或无源滤波器绝对有) _LIYXIHR_08YNK__EV8SXDH.jpg图片 然后化简 X25LO__~TXMGO59LTLV@9S9.jpg图片 根据推导得到的表达式,对于 jwRC2 ,这一项,当 w 趋于无穷大时,uo/ui 趋于零。那么高频的临界点就是 wRC2 = 1+2C2/C1;(此时忽略低频项1/jwRC1) 同理,对于低频项 1 /jwRC1, w 趋于无穷小时,uo/ui 趋于零 ,那么低频的临界点就是 1/wRC1 = 1+2C2/C1;然后解二元一次方程两个电容就被解出来了 这里提供一种更简单方法: 二阶带通滤波器的中心频率 f0 和品质因数 Q 可以用下面的公式计算: image.png图片 已知 R1 = R2 = 10kΩ,f0 = (1kHz + 30kHz) / 2 = 15.5kHz,Q = f0 / (30kHz - 1kHz) = 0.54,代入上面的公式,可以求得: image.png图片 这是一个二元一次方程组,可以用任意方法求解,例如消元法或代入法。为了方便起见,我们假设 C1 和 C2 的值相近,那么可以近似地认为 C1 = C2 = 3.45nF。这样就得到了两个电容的容值。当然,也可以选择其他的电容值,只要满足上面的方程组即可。
FPGA&ASIC
软硬件算法
# 笔试面试
刘航宇
2年前
0
1,283
8
2023-04-02
【数字IC笔面必备】同步FIFO与异步FIFO
同步FIFO 同步FIFO相对异步FIFO较为简单,FIFO:先入先出 FIFO原则:满不能写,空不能读。 关键:full和empty信号如何产生? 方法1:用长度计数器factor。执行一次写操作,factor加1,执行一次读操作,factor减1。 方法2:地址位扩展一位,用最高位来判断空满。读地址=写地址,则空;读地址与写地址相差一个存储空间长度,则满。 对于方法1来说比较简单,本文重点讲异步FIFO,对于同步FIFO我们给出伪代码,读者自行补全该模块全部代码。 图片 图片 图片 图片 异步FIFO 异步FIFO的整体结构大致如下: Write_control:控制写操作与满信号(w_full)的判断与产生。 Read_control:控制读操作与空信号(r_empty)的判断与产生。 RAM:双端口数据存取RAM。 Bin_to_gray:二进制码转格雷码模块。用于将读写地址二进制码转成格雷码。 SYN:跨时钟同步模块,即将读地址的格雷码(r_g_addr)向w_clk同步;将写地址的格雷码(w_g_addr)向r_clk同步。主要操作就是通过寄存器打两拍。 图片 使用扩展地址位来判断空满,读写信号时钟不同。 关键在于格雷码使用,同步可以不用格雷码,异步两时钟不一样,采用出错概率大,普通二进制码会出现多个错误,而格雷码每次跳转只会有一位发生变化,出错概率小且顶多是使得FIFO的读或者写操作暂停。 详细解释: 图片 在中间状态采样,这个是不可能避免的,这是异步系统天生的缺陷。我们的目标是:即使在中间状态采样,也不能影响空满状态的判断。符合这个要求的编码方式是:每次只能有1个bit发生改变。为什么这么说呢?因为当只有一一个bit发生改变时,即使在中间状态采样,其结果也不外乎两种:递增前原指针和递增后新指针。显然递增后新指针是最新情况的反映,如果采样到这个指针,那么和我们的设计预期是一致的,如果采样到递增前的原指针,会有什么结果呢?假设现在采样读指针,那么最坏的情况就是把“不满”判断成了“满”,使得本来被允许的写操作被禁止了,但是这并不会对逻辑产生影响,只是带来了写操作的延迟。同样的,如果现在采样写指针,那么最坏的情况就是把“不空”判断成“空”,使得本来被允许的读操作被禁止了,但是这也不会对逻辑产生影响,只是带来了读操作的延迟 显然每次之变化1个bit的编码方案可以有效解决中间态下空满状态的判断问题,格雷码就是这样一种编码。 关键点解释 1.跨时钟域传递信号做时钟同步一般通过打两拍。 2.采用格雷码编码(解决汇聚问题),因为格雷码每次跳转只会有一位发生变化,所以如果出现不确定状态也只会有两种状况,即正确变化了和不变。因此在读写时钟不一样的情况下,纵使读写地址每bit同步过程中出现延时不一致,也不会使得FIFO在实际空或者满之后,FIFO却没有正确的产生出空满信号。只有可能是实际没有空或者满,但产生了空满信号,但这对于FIFO的功能不会有影响,只会使得FIFO的读或者写操作暂停。 3.读比写时钟更快,只会只出现实际没满,但误判为满;不会对功能(数据流)造成错误。 4.写比读时钟更快,只会出现实际没空,但误判为空;不会对功能(数据流)造成错误。 verilog格雷码生成 观察下面码表,格雷码最高位与原码一致,其它位对应原码相邻两位相互异或的结果 图片 module bin_to_gray #( parameter WIDTH_D = 5 )( input [WIDTH_D-1:0] bin_c, output [WIDTH_D-1:0] gray_c ); wire h_b; assign h_b = bin_c[WIDTH_D-1]; reg [WIDTH_D-2:0] gray_c_d; integer i; always @( * ) for( i=0;i<WIDTH_D-1;i=i+1 ) gray_c_d[i] = bin_c[i]^bin_c[i+1]; assign gray_c = {h_b,gray_c_d}; endmodule源程序下载 异步FIFO源程序 下载地址:https://wwek.lanzoub.com/iBiJF0rxkgli 提取码:
FPGA&ASIC
# ASIC/FPGA
# 笔试面试
刘航宇
2年前
0
494
2