侧边栏壁纸
    • 累计撰写 303 篇文章
    • 累计收到 529 条评论
    matlab实现灰度图像边缘提取
    我的学记|刘航宇的博客

    matlab实现灰度图像边缘提取

    刘航宇
    2021-05-11 / 3 评论 / 590 阅读 / 正在检测是否收录...

    实验一:编程实现灰度图像空间域边缘提取,至少包括: 梯度算子、Roberts算子、Sobel算子、拉普拉斯算子及LOG算子,并比较不同算法提取边缘的效果及影响因素

    代码:

    f=rgb2gray(imread('D:\图片\image\liuhangyu.jpg')); %更换你的图片地址
    T=20;%阈值
    [m,n]=size(f);
    %------梯度法-------
    f_g=zeros(m,n);
    for i=2:m-1
        for j=2:n-1
            f_g(i,j)=abs(f(i+1,j)-f(i,j))+abs(f(i,j+1)-f(i,j));
            if f_g(i,j)<T
                f_g(i,j)=0;
            else
                f_g(i,j)=255;
            end
        end
    end
    figure(1);
    subplot(2,4,1);imshow(uint8(f_g));title('梯度法');
     
    %------roberts算子-------
    f_r=zeros(m,n);
    for i=2:m-1
        for j=2:n-1
            f_r(i,j)=abs(f(i+1,j+1)-f(i,j))+abs(f(i,j+1)-f(i+1,j));
            if f_r(i,j)<T
                f_r(i,j)=0;
            else
                f_r(i,j)=255;
            end
        end
    end
    %f_r=imbinarize(imfilter(f,r),T);
    subplot(2,4,2);imshow(uint8(f_r));title('Roberts算子');
     
    %------prewitt算子-------
    f_p=zeros(m,n);
    for i=2:m-1
        for j=2:n-1
            f_p(i,j)=abs(f(i-1,j-1)+f(i,j-1)+f(i+1,j-1)-f(i-1,j+1)-f(i,j+1)-f(i+1,j+1))+abs(f(i+1,j-1)+f(i+1,j)+f(i+1,j+1)-f(i-1,j-1)-f(i-1,j)-f(i-1,j+1));
            if f_p(i,j)<15
                f_p(i,j)=0;
            else
                f_p(i,j)=255;
            end
        end
    end
    subplot(2,4,3);imshow(uint8(f_p));title('Prewitt算子');
     
    %------sobel算子-------
    f_s=zeros(m,n);
    for i=2:m-1
        for j=2:n-1
            f_s(i,j)=abs(f(i-1,j-1)+2*f(i,j-1)+f(i+1,j-1)-f(i-1,j+1)-2*f(i,j+1)-f(i+1,j+1))+abs(f(i+1,j-1)+2*f(i+1,j)+f(i+1,j+1)-f(i-1,j-1)-2*f(i-1,j)-f(i-1,j+1));
            if f_s(i,j)<T
                f_s(i,j)=0;
            else
                f_s(i,j)=255;
            end
        end
    end
    subplot(2,4,4);imshow(uint8(f_s));title('Sobel算子');
     
    %------krisch算子-------
    k(:,:,1)=[-3,-3,-3;
        -3,0,5;
        -3,5,5];
    k(:,:,2)=[-3,-3,5;
        -3,0,5;
        -3,-3,5];
    k(:,:,3)=[-3,5,5;
        -3,0,5;
        -3,-3,-3];
    k(:,:,4)=[-3,-3,-3;
        -3,0,-3;
        5,5,5];
    k(:,:,5)=[5,5,5;
        -3,0,-3;
        -3,-3,-3];
    k(:,:,6)=[-3,-3,-3;
        5,0,-3;
        5,5,-3];
    k(:,:,7)=[5,-3,-3;
        5,0,-3;
        5,-3,-3];
    k(:,:,8)=[5,5,-3;
        5,0,-3;
        -3,-3,-3];
    kk=zeros(size(f));
    I=double(f);
    for i=1:8
        f_k(:,:,i)=conv2(I,k(:,:,i),'same');
        kk=max(kk,f_k(:,:,i));
    end
    f_kk=imbinarize(kk,600);
    subplot(2,4,5);imshow(f_kk);title('Krisch算子');
     
    %------LoG算子-------
    log1=[0 0 -1 0 0;
        0 -1 -2 -1 0;
        -1 -2 16 -2 -1;
        0 -1 -2 -1 0;
        0 0 -1 0 0];
    f_l=conv2(f,log1,'same');
    f_ll=imbinarize(abs(f_l),300);
    subplot(2,4,6);imshow(f_ll);title('LoG算子');
    
    %------拉普拉斯算子------- 
    I=f;
    I=im2double(I);
    [M,N]=size(I);
    B=zeros(size(I));
    for x=2:M-1
        for y=2:N-1
            B(x,y)=I(x+1,y+1)+I(x-1,y-1)+I(x-1,y+1)+I(x+1,y-1)+I(x+1,y)+I(x-1,y)+I(x,y+1)+I(x,y-1)-8*I(x,y);
        end
    end
    I=im2uint8(I);
    B=im2uint8(B);
    subplot(2,4,7);imshow(I);title('原图');
    subplot(2,4,8);imshow(B);title('拉普拉斯算子后的图');
    
    

    现象:

    分析:

    通过比较提取边缘效果,可以发现Roberts算子的边缘定位较准确,但是抗噪声能力较弱。Sobel算子有平滑差分作用,它利用像素临近区域的梯度值来计算一个像素的梯度,然后进行取舍。拉普拉斯高斯算子通过对图像进行微分操作实现边缘检测,所以对离散点和噪声较敏感,可以强化突变,并且保留部分物体内部。

    实验二:编程实现灰度图像阈值分割,至少包括: 固定阈值分割、最大类间方差(Otsu)方法、最佳熵自动门限方法,并比较不同算法分割的效果及影响因素。

    代码

    由于算法复杂,此程序需要执行很长时间如果遇到没反应请等待一会即可

    tip:担心报错请用下面图片处理

    I=imread('D:\图片\image\liuhangyu.jpg');
    imshow(I);
    %输出直方图
    figure;imhist(I);
    %人工选定阈值进行分割,选择阈值为120
    [width,height]=size(I);
    T1=120;
    for i=1:width
        for j=1:height
            if(I(i,j)<T1)
                BW1(i,j)=0;
            else 
                BW1(i,j)=1;
            end
        end
    end
    figure;imshow(BW1),title('人工阈值进行分割');
    %自动选择阈值
    T2=graythresh(I);
    BW2=im2bw(I,T2);%Otus阈值进行分割
    figure;imshow(BW2),title('Otus阈值进行分割');
    
    count = imhist(I);                %图像的直方图
    [m,n] = size(I);
    N = m*n;
    L = 256;
    count = count/N;                  %每一个像素的分布概率
     
    for i = 1:L
        if count(i) ~= 0
            st = i-1;
            break;
        end
    end
     
    for i = L:-1:1
        if count(i) ~= 0
            nd = i-1;
            break;
        end
    end
     
    f = count(st+1:nd+1);             %f是每个灰度出现的概率
    size(f);
    E=[];
    for Th = st:nd+1
        Hbt = 0;
        Hwt = 0;
        Pth = sum(count(1:Th+1));
        
        for i = 0:Th            %计算图像背景的熵
            Hbt = Hbt-count(i+1)/Pth*log(count(i+1)/Pth+0.01);  
        end
       
        for i = Th+1:L-1;       %计算图像目标的熵
            Hwt = Hwt-count(i+1)/(1-Pth)*log(count(i+1)/(1-Pth)+0.01);
        end
        E(Th-st+1) = Hbt+Hwt;
    end
    position = find(E==(max(E)));
    Ht = st+position-100;
    for i = 1:m
        for j = 1:n
            if a(i,j)>Ht
                a(i,j) = 0;            %对图像分割
            else
                a(i,j) = 255;
            end
        end
    end
    figure,imshow(I),title('最佳熵自动门限方法');
    

    报错,换上面提示的图片处理
    实验现象应有5张图,不要出现数组超出

    3
    嵌入式第二次测试解答
    « 上一篇 2021-05-12
    嵌入式实战—应用open调用内核open,应用close调用内核close通信程序
    下一篇 » 2021-05-09

    评论 (3)

    取消
    1. 头像
      刘航宇 作者
      Windows 10 · Google Chrome

      单独一个最佳熵程序,报错可用这个
      clear all

      a = imread('p5-09.tif');
      figure,imshow(a)
      count = imhist(a); %图像的直方图
      [m,n] = size(a);
      N = m*n;
      L = 256;
      count = count/N; %每一个像素的分布概率

      for i = 1:L
      if count(i) ~= 0
      st = i-1;
      break;
      end
      end

      for i = L:-1:1
      if count(i) ~= 0
      nd = i-1;
      break;
      end
      end

      f = count(st+1:nd+1); %f是每个灰度出现的概率
      size(f);
      E=[];
      for Th = st:nd+1
      Hbt = 0;
      Hwt = 0;
      Pth = sum(count(1:Th+1));

      for i = 0:Th %计算图像背景的熵
      Hbt = Hbt-count(i+1)/Pth*log(count(i+1)/Pth+0.01);
      end

      for i = Th+1:L-1; %计算图像目标的熵
      Hwt = Hwt-count(i+1)/(1-Pth)*log(count(i+1)/(1-Pth)+0.01);
      end
      E(Th-st+1) = Hbt+Hwt;
      end
      position = find(E==(max(E)));
      Ht = st+position-100;
      for i = 1:m
      for j = 1:n
      if a(i,j)>Ht
      a(i,j) = 0; %对图像分割
      else
      a(i,j) = 255;
      end
      end
      end
      figure,imshow(a);

      回复
    2. 头像
      朱红斌
      Android · Google Chrome

      回复
      1. 头像
        刘航宇 作者
        Windows 10 · Google Chrome
        @ 朱红斌

        一般般

        回复