标签 通信&射频 下的文章 - 我的学记|刘航宇的博客
首页
📊归档
⏳时光机
📬留言
🐾友链
资助名单
推荐
🎓843课程班
🎵音乐
🏞️壁纸
搜 索
1
【NPN/PNP三极管】放大电路饱和失真和截止失真的区别
13,194 阅读
2
论文写作中如何把word里面所有数字和字母替换为新罗马字体
7,414 阅读
3
【高数】形心计算公式讲解大全
6,842 阅读
4
如何判断运放是工作在线性区还是非线性区
5,417 阅读
5
【1】基于STM32CubeMX-STM32GPIO端口开发
5,320 阅读
🌻微语&随笔
励志美文
我的随笔
写作办公
📖电子&通信
嵌入式&系统
通信&信息处理
编程&脚本笔记
🗜️IC&系统
FPGA&ASIC
VLSI&IC验证
EDA&虚拟机
💻电子&计算机
IP&SOC设计
机器学习
软硬件算法
登录
搜 索
标签搜索
嵌入式
ASIC/FPGA
VLSI
SOC设计
机器学习
天线设计
C/C++
EDA&虚拟机
软件算法
小实验
信号处理
电子线路
通信&射频
随笔
笔试面试
硬件算法
Verilog
软件无线电
Python
DL/ML
刘航宇
嵌入式系统&数字IC爱好者博客
累计撰写
303
篇文章
累计收到
529
条评论
首页
栏目
🌻微语&随笔
励志美文
我的随笔
写作办公
📖电子&通信
嵌入式&系统
通信&信息处理
编程&脚本笔记
🗜️IC&系统
FPGA&ASIC
VLSI&IC验证
EDA&虚拟机
💻电子&计算机
IP&SOC设计
机器学习
软硬件算法
页面
📊归档
⏳时光机
📬留言
🐾友链
资助名单
推荐
🎓843课程班
🎵音乐
🏞️壁纸
用户登录
登录
通信&射频(共3篇)
找到
3
篇与
通信&射频
相关的结果
RFID编码简介
信号编码系统包括信源编码和信道编码两大类,器作用是把要传输的信息尽可能的与传输信道相匹配,并提供对信息的某种保护以防止信息受到干扰。信源编码与信源译码的目的是提高信息传输的有效性以及完成模数转换等;信道编码与信道译码的目的是增强信号的抗干扰能力,提高传输的可靠性。常见的编码方法如下图:RFID系统常用编码方法:反向不归零(NRZ)编码曼彻斯特(Manchester)编码单极性归零(RZ)编码差动双相(DBP)编码密勒(Miller)编码和差动编码1、反向不归零编码(NRZ,Non Return Zero)反向不归零编码用高电平表示二进制“1”,低电平表示二进制“0”,如下图所示:此码型不宜传输,有以下原因有直流,一般信道难于传输零频附近的频率分量;接收端判决门限与信号功率有关,不方便使用;不能直接用来提取位同步信号,因为NRZ中不含有位同步信号频率成分;要求传输线有一根接地。注:ISO14443 TYPE B协议中电子标签和阅读器传递数据时均采用NRZ2、曼彻斯特编码(Manchester)曼彻斯特编码也被称为分相编码(Split-Phase Coding)。某比特位的值是由该比特长度内半个比特周期时电平的变化(上升或下降)来表示的,在半个比特周期时的负跳变表示二进制“1”,半个比特周期时的正跳变表示二进制“0”,如下图所示:曼彻斯特编码的特点曼彻斯特编码在采用负载波的负载调制或者反向散射调制时,通常用于从电子标签到读写器的数据传输,因为这有利于发现数据传输的错误。这是因为在比特长度内,“没有变化”的状态是不允许的。当多个标签同时发送的数据位有不同值时,则接收的上升边和下降边互相抵消,导致在整个比特长度内是不间断的负载波信号,由于该状态不允许,所以读写器利用该错误就可以判定碰撞发生的具体位置。曼彻斯特编码由于跳变都发生在每一个码元中间,接收端可以方便地利用它作为同步时钟。注:ISO14443 TYPE A协议中电子标签向阅读器传递数据时采用曼彻斯特编码。ISO18000-6 TYPE B 读写器向电子标签传递数据时采用的是曼彻斯特编码3、单极性归零编码(Unipolar RZ)当发码1时发出正电流,但正电流持续的时间短于一个码元的时间宽度,即发出一个窄脉冲当发码0时,完全不发送电流单极性归零编码可用来提取位同步信号。4、差动双相编码(DBP)差动双相编码在半个比特周期中的任意的边沿表示二进制“0”,而没有边沿就是二进制“1”,如下图所示。此外在每个比特周期开始时,电平都要反相。因此,对于接收器来说,位节拍比较容易重建。5、密勒编码(Miller)密勒编码在半个比特周期内的任意边沿表示二进制“1”,而经过下一个比特周期中不变的电平表示二进制“0”。一连串的比特周期开始时产生电平交变,如下图所示,因此,对于接收器来说,位节拍也比较容易重建。6、修正密勒码编码7、脉冲-间歇编码对于脉冲—间歇编码来说,在下一脉冲前的暂停持续时间t表示二进制“1”,而下一脉冲前的暂停持续时间2t则表示二进制“0”,如下图所示。这种编码方法在电感耦合的射频系统中用于从读写器到电子标签的数据传输,由于脉冲转换时间很短,所以就可以在数据传输过程中保证从读写器的高频场中连续给射频标签供给能量。8、脉冲位置编码(PPM,Pulse Position Modulation)脉冲位置编码与上述的脉冲间歇编码类似,不同的是,在脉冲位置编码中,每个数据比特的宽度是一致的。其中,脉冲在第一个时间段表示“00”,第二个时间段表示“01”, 第三个时间段表示“10”, 第四个时间段表示“11”, 如图所示注:ISO15693协议中,数据编码采用PPM9、FM0编码FM0(即Bi-Phase Space)编码的全称为双相间隔码编码、工作原理是在一个位窗内采用电平变化来表示逻辑。如果电平从位窗的起始处翻转,则表示逻辑“1”。如果电平除了在位窗的起始处翻转,还在位窗中间翻转则表示逻辑“0”。注:ISO18000-6 typeA 由标签向阅读器的数据发送采用FM0编码10、PIE编码PIE(Pulse interval encoding)编码的全称为脉冲宽度编码,原理是通过定义脉冲下降沿之间的不同时间宽度来表示数据。在该标准的规定中,由阅读器发往标签的数据帧由SOF(帧开始信号)、EOF(帧结束信号)、数据0和1组成。在标准中定义了一个名称为“Tari”的时间间隔,也称为基准时间间隔,该时间段为相邻两个脉冲下降沿的时间宽度,持续为25μs。注:ISO18000-6 typeA 由阅读器向标签的数据发送采用PIE编码=============================================注:选择编码方法的考虑因素编码方式的选择要考虑电子标签能量的来源在REID系统中使用的电子标签常常是无源的,而无源标签需要在读写器的通信过程中获得自身的能量供应。为了保证系统的正常工作,信道编码方式必须保证不能中断读写器对电子标签的能量供应。在RFID系统中,当电子标签是无源标签时,经常要求基带编码在每两个相邻数据位元间具有跳变的特点,这种相邻数据间有跳变的码,不仅可以保证在连续出现“0”时对电子标签的能量供应,而且便于电子标签从接收到的码中提取时钟信息。编码方式的选择要考虑电子标签的检错的能力出于保障系统可靠工作的需要,还必须在编码中提供数据一级的校验保护,编码方式应该提供这种功能。可以根据码型的变化来判断是否发生误码或有电子标签冲突发生。在实际的数据传输中,由于信道中干扰的存在,数据必然会在传输过程中发生错误,这时要求信道编码能够提供一定程度的检测错误的能力。曼彻斯特编码、差动双向编码、单极性归零编码具有较强的编码检错能力。编码方式的选择要考虑电子标签时钟的提取在电子标签芯片中,一般不会有时钟电路,电子标签芯片一般需要在读写器发来的码流中提取时钟。曼彻斯特编码、密勒编码、差动双向编码容易使电子标签提取时钟。
2023年09月27日
1,104 阅读
0 评论
0 点赞
2023-07-13
反向散射理论与ADG902电路实现
后向散射通信技术,是在天线对信号散射的基础上,采用标签后向散射的方式,通过改变发射端标签的反射系数来实现后向散射通信。无线电波在传输过程中,当通过不同介质时,因为介质阻抗的差异性,会产生反射作用,根据介质材料和阻抗的不同,会产生不同的反射量。因此通过调节天线端口的阻抗匹配度,入射的无线电波就可以产生不同反射量,导致入射信号和反射信号的差异性,也就是反射系数 Γ 。具体表示如下:$$\Gamma=\frac$$式中 Z0表示天线端的特征阻抗,一般是 50 Ω,ZL表示标签端口的输入阻抗,Γ表示入射信号振幅和反射信号振幅的复数比。当Γ=0 时,阻抗匹配,入射信号全部传递,无反射信号的产生;Γ = 1时,标签端的输入阻抗为开路,阻抗失配,入射信号被全部反射,产生幅值相同相位相同的反射信号;Γ = −1时,标签端的输入阻抗为短路状态,阻抗失配,入射信号被全部反射,产生幅值相同相位相反的反射信号。因此,通过改变标签的输入阻抗,产生不同的反射系数,就可以控制无线电波的入射和反射,实现有效信号的传递,这也就是后向散射通信的基本原理。为了实现上述后向散射通信,还需要加载天线端口的控制,结构如下图。通过射频开关来控制两个不同的负载阻抗与天线端口的连接,实现阻抗的匹配和失调,完成信号的入射和反射。当开关在负载 Z1和 Z2间转化时,由于负载阻抗的不同,载波信号在天线端的反射比例也不同,因此就产生了不同的调制载波。在实际通信中,为了达到最优传输质量,通常要使反射信号的差异最大,对应完全反射和完全吸收两种形式。对调制后的反射信号进行解调处理后,就可以得到所传递的基带信号,完成后向散射的通信。采用负载 50 Ω 的完全吸收和负载短路的完全反射两种信号传输差异,来实现后向散射的信息传输。使用后向散射开关 ADG 902 来实现基带信号对天线状态的控制,ADG 902 电路结构如图 4.12 所示。将数字基带信号的接入 ADG 902 的 CTRL 端,通过数字基带信号的“0”、“1”来控制 ADG 902 的关断和闭合,RF2 端连接射频天线。通过 ADG 902 中开关的关断,来控制天线对外界调制载波的反射和吸收。当逻辑电平 CTRL=0时,S1关断,S2闭合,此时天线接收端口接地,由式可得,Z=0,T=1,载波信号被完全反射;当逻辑电平 CTRL=1 时,S1 闭合,S2 关断,此时天线接收端匹配,载波被完全吸收。
2023年07月13日
517 阅读
1 评论
1 点赞
2023-04-17
MIMO波束赋形技术简介
前言在MIMO系统中,波束赋形技术通过调整每个天线阵元上的信号进行加权求和,使天线波束指向某个特定的方向,即将天线能量集中指向某个特定的用户。波束赋形分类根据波束赋形发生位置的不同,波束赋形技术分为模拟波束赋形(AnalogBeamforming, ABF)技术和数字波束赋形(Digital Beamforming, DBF)技术。在数字基带之前即时域范围内形成波束,称作数字波束赋形;在模拟基带之前即频域范围内形成波束,称作模拟波束赋形。数字波束赋形结构中,每根天线对应的一条射频(RF)链路,产生波束时多条RF链路共同参与,因此可以实现多个数据流共同传输。数字波束赋形使用复杂的硬件结构,可以灵活的调整相位和幅度,产生准确的波束。对于天线数量众多时,导致整个结构的硬件实现非常复杂,成本很高。模拟波束赋形技术使用成本比较低的模拟移相器,只能调整相位而不能调整幅度,产生波束不一定准确。模拟波束赋形,具有简单的硬件结构,实现成本低,没有多条RF链路,只能传输单数据流阵列天线阵列天线实现功能是对多列电磁波进行叠加,不同天线位置会产生不同的电磁波辐射,因此,波束赋形技术与天线位置和摆放有密切关系。阵列天线包括线阵天线和面阵天线两种线阵天线是指所有天线阵元分布在一条直线上,或者所有天线阵元分布在一个圆周上,阵元与阵元的间隔可以是等距的或不等距的;面阵天线是指所有天线阵元以某个点为中心分布在一个矩形面上,或者所有天线阵元分布在一个圆面上,同样,阵元与阵元的间隔可以是等距的或不等距的。对于F大线数量较多的情况,天线阵列可能会扩展到三维空间,也是未米人线架构设计的一个方向。混合波束赋形数字波束赋形可以产生精确的波束,但是每根天线映射一条RF链路,从硬件实现和成本考虑,该技术适用于天线数量较少的系统。对于天线数量较多的系统,可以使用实现成本较低的模拟波束赋形,可能导致波束不准确,增益效果不是很好。因此,对于大规模MIMO系统,结合两者优点,提出了一种混合波束赋形技术,希望在满足硬件条件下,使其增益尽可能达到全数字波束赋形的效果。在较小的面积内拥有大量天线单元使实现高波束成形增益变得切实可行。具有高度方向性的波束有助于抵消较高工作频率下增加的路径损耗,因为波束将功率控制在特定方向上。总结Simulink和Matlab联合仿真,能够设计并且仿真单个天线,天线阵列,MIMO波束成型系统。对于雷达、5G等方向,有着重要意义。当然,工具不仅仅只有这一个,ADS也能设计从射频波束混合系统,到天线阵列的仿真。参考文献:[1]使用Matlab进行5G开发
2023年04月17日
856 阅读
0 评论
2 点赞